- 博客(94)
- 资源 (26)
- 收藏
- 关注

原创 镜头(焦距,CRA),光圈,红外灯,sensor 选型专栏
1.光圈和景深 F值越小空间越大 光圈孔径越大,景深越小,虚化能力越强。 手动光圈镜头:所需监视的环境照度变化不大,如室内。自动光圈镜头:所需监视的环境照度变化大,如室外。 选择大光圈可以突出主题,虚化周边。如果想拍摄宏大的场面则不适合。2.焦距和景...
2019-07-29 20:05:28
4631
1

原创 安防摄像头一百问--------持续更新
1、简单说H265相比H264优势 H265 & H264 比较 同样的画质,同样码率,前者占用空间小,这就意味着码率一样,传输同样大小的数据,前者传输信息量更多,细节再现能力更强。 前者提供了更多个编码块,对大片单色区域用大块编码,细节多的部分用小块编码,这样就有了重点。帧内预测方向能力比后...
2019-07-09 19:01:09
1613

原创 站在大神的肩上看傅里叶变换
《这是大神的链接,不复制是想对大神表示尊重》它解决了我上学时候苦苦思索的纠结。这也直接间接的说明大神和老师的区别,可惜了我当年选择了普通小本小硕,受到的都是老师的迷惑而不是大神的启迪。...
2019-04-11 15:04:14
3506

原创 ISP PIPLINE 知识综述预热之光学概念篇
1.光学成像关系如下:这是我看到最清晰的易懂的数学关系图2.上面的知识了解完,camera应用的知识就是Autofocus技术,自动对焦马达的起始位置一般在焦距处,由上面光学数学关系可知,焦距处可以清楚的对远处的物体成像。但是物体如果很近比如20cm,那vcm该如何驱动呢?根据,可知当物距为(Xo+f)时,像距为(Xi+f),则vcm需要向物体方向移动Xi。 ...
2019-03-17 22:48:19
8475

原创 ISP PIPLINE AWB自动白平衡
What is WB(white balance)?人的视觉和神经系统在看到白色物体的时候,基本不受环境的变化而出现严重的错觉。比如阴天,晴天,室内,室外,日光灯,白炽灯等的环境下,人依然会将白纸视作白纸。但是imagesensor这种电子器件没有心理和神经作用。受制于环境色温的影响。拍出的照片会出现偏色的情况。色温的定义:一个黑体加热之后,随着温度的升高,黑体会先发出红色,然后...
2019-03-12 22:49:56
9188
2

原创 ISP PIPLINE LensShading Correct
whatis the LSC? lens shading分为:Y-shading , color shading。 在讲LSC之前,我们先来理解一个重要的术语--CRA(Chiefray angle)。 CRA:分为lens cra , sensor cra两种。 ...
2019-03-05 00:17:09
10170
6

原创 神经网络模型的评价指标
1、准确率(Accuracy) 举例:我们有10张图片,每张图片有2类对象待定位检测。 此时总和为20,如果我们的模型定位并识别正确的个数为20,则准确率为100%。 老师:准确率高? 学生:高 老师:这个系统还把某些不应该检测的对象定位并检测出来了,误检出10个,你觉得这个系统靠谱? 学生:不是很...
2018-12-19 10:55:44
22331

原创 Yolov3实战 基于darknet window版
特此声明:训练过程预先认为你对yolov3神经网络有一定了解的基础上进行。目录一、先备齐下面的工具(预先善其事,必先利其器)二、接下里使用我们的工具编译我们的环境三、 训练自己的数据集1. 制作训练样本2. 准备训练前必备的文件四、训练及测试4.1 训练4.2 测试一、先备齐下面的工具(预先善其事,必先利其器)(如果你不想走弯路,还是按照我说的...
2018-12-18 09:12:49
10046
2

原创 darknet Yolo v3参数详细解释
目录参数解析训练答疑参数解析[net]#Testing#batch=1 //test:一次一个图片#subdivisions=1 #Training batch=32 //一次迭代送入网络的图片数 subdivisions=8 //一次迭代分成subdivisions次前向计算,这里是32/8width=416...
2018-12-14 23:58:08
12538
11

转载 YOLO系列:YOLO v3解析
本文好多内容转载自https://blog.csdn.net/leviopku/article/details/82660381yolo_v3 提供替换backbone。要想性能牛叉,backbone可以用Darknet-53,要想轻量高速,可以用tiny-darknet首先,看一下YOLOV3网络结构**DBL**: 如图1左下角所示,也就是代码中的Darknetconv2d_BN_...
2018-12-13 18:57:57
9780

转载 YOLO系列:YOLO v2深度解析 v1 vs v2
部分内容转载自: https://blog.csdn.net/Jesse_Mx/article/details/53925356 论文地址:YOLO9000: Better, Faster, Stronger 项目主页:YOL...
2018-12-12 11:39:16
7531
2

转载 RCNN系列超详细解析
一、基于Region Proposal(候选区域)的深度学习目标检测算法Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率(IoU,Intersection-over-Union)。图1 IoU定义Region Proposal方法比传统的滑动窗口方...
2018-12-04 16:11:26
1546

转载 深度学习目标检测:RCNN,Fast,Faster,YOLO,SSD比较
转载出处:http://blog.csdn.net/ikerpeng/article/details/54316814知乎的图可以放大,更清晰,链接:https://www.zhihu.com/question/35887527/answer/140239982 这篇博文很简单,我就画了一个图,将各自的要点进行比较说明。 相信这样看过去就一目了然了,但是需要说明的还是: Y...
2018-12-04 16:06:50
7335

转载 一文看懂迁移学习:怎样用预训练模型搞定深度学习?
跟传统的监督式机器学习算法相比,深度神经网络目前最大的劣势是什么?贵。尤其是当我们在尝试处理现实生活中诸如图像识别、声音辨识等实际问题的时候。一旦你的模型中包含一些隐藏层时,增添多一层隐藏层将会花费巨大的计算资源。庆幸的是,有一种叫做“迁移学习”的方式,可以使我们在他人训练过的模型基础上进行小改动便可投入使用。在这篇文章中,我将会讲述如何使用预训练模型来加速解决问题的过程。注...
2018-08-04 18:30:23
8000
8

转载 Python实现的各种机器学习算法
七种算法包括: 线性回归算法 Logistic 回归算法 感知器 K 最近邻算法 K 均值聚类算法 含单隐层的神经网络 多项式的 Logistic 回归算法 01 线性回归算法 在线性回归中,我们想要建立一个模型,来拟合一个因变量 y 与一个或多个独立自变量(预测变量) x 之间的关系。 给定:...
2018-05-13 16:40:54
7588

转载 深度学习 25个重要概念
机器人圈」导览:很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的含义。本文编译自Analytics Vidhya,相信读过此文的圈友,会对深度学习有个全新的认识,机器人圈希望可以为圈友的深度学习之路起到一些辅助作用。文章略长,时长大约20分钟,请仔细阅读收藏。人工智能,深度学习,机器学习—无论你在做什么,如果...
2018-05-12 19:59:49
1527
原创 基于halcon与opencv的坏点检测算法c++程序
1、坏点检测主要用于检测sensor的坏点,本程序主要基于halcon算子c++程序以及opencv库编写而成,可以实现检测坏点,并统计坏点簇面积(簇像素个数)。原图如下:检测图如下;检测结果:核心程序如下:完整代码可从此网站下载http://www.capss.xyz/p.php?8tp=t3.18534a2051b5000.pg3 附halcon永久版,如需可下:http://www.capss.xyz/p.php...
2021-02-28 23:51:43
28
原创 超焦距详解
1.什么是超焦距 当镜头对焦在无穷远时,景深前界(离镜头最近清晰点)到镜头的距离称之为超焦距。 换句话说当镜头对焦在这个超焦距点时,从这个超焦距点到相机一半的距离开始到无穷远都是清晰的。 有点绕是吧? 那我们直接拿镜头focus shift 举例。 当我们对焦到目标物体为无穷远时,景深为0.75~INF, 0.75就是景深前界,也就是超焦距。 当我们对焦到0.75m时,可以发现景深为0.38~INF, 景深前界正好为超焦距一半。 2....
2021-02-28 14:06:38
84
2
转载 c++多项式拟合
基本原理:幂函数可逼近任意函数。上式中,N表示多项式阶数,实际应用中一般取3或5;假设N=5,则:共有6个未知数,仅需6个点即可求解;可表示为矩阵方程:Y的维数为[R*1],U的维数[R * 6],K的维数[6 * 1]。R> 6时,超定方程求解:下面是使用C++实现的多项式拟合的程序,程序中使用opencv进行矩阵运算和图像显示。程序分别运行了N=3,5,7,9时的情况,结果如下:#include <opencv2\opencv.hpp>#include
2021-02-28 13:26:23
5
原创 Halcon 常用算子使用场合
Chapter 1 :Classification1.1 Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型来计算一个特征向量的类。3. clear_all_class_gmm 功能:清除所有高斯混合模...
2021-01-03 12:46:52
367
转载 解读MTF曲线
怎样看MTF曲线光学模量传递函数所表示的就是模量传递函数值随空间频率和像场位置变化的函数关系。它有很多种类型, 但最主要的两种类型就是MTF值与空间频率的关系和与像场半径(或像场角)之间的关系。1、什么是空间频率在讲清MTF曲线随空间频率的变化关系以前,我们先来弄明白什么叫“空间频率”。 空间频率(Spatial Frequency)的概念与分辨率的概念非常相似,单位都是“线对/毫米”(lp/mm)。但测试分辨率的标板是一组一组轮廓鲜明的黑白线条,每两条线条之间的距离,以及线条本身的宽度之比是.
2020-08-19 14:07:06
1210
原创 几何光学中级概论
3-9 F number 与数值孔径 Numerical Aperture 现在要说明的是F number与Numerical Aperture 数值孔径,图1中有一平行光进来,且会聚焦成一点,假设物在无穷远处,透镜的孔径为D,焦距为f。所以F number的定义就是焦距除以孔径,如公式1。而Numerical Aperture所代表的是透镜成像的能力,它的定义是像空间的折射率乘以成像的斜角α。NA = n * sin α,其中 n 是被观察物体与物镜之间介质的折射率;α 是物镜孔径角...
2020-08-19 13:02:53
901
原创 镜头像差之五——畸变
什么是畸变:1、畸变的存在仅引起像的变形,但不影响成像的清晰度畸变产生的原因:由于焦平面上不同区域对影像的放大率不同而形成的画面扭曲变形现象,这种变形的程度从画面中心至画面边缘依次递增,主要在画面边缘反映得较明显。如果拍摄和镜头同心的圆是看不出畸变的。但是可以发现这些同心圆的间距不相等。畸变矫正方法:图像算法,对镜头畸变进行标定,拟合出镜头畸变数学模型参数,然后对数学模型进行反畸变矫正。...
2020-08-18 21:57:36
451
原创 镜头像差之五——场曲
什么是场曲?场曲[curvature of field]物面上所有的点经过系统后,最佳焦点位置不在同一平面上,若这些像点所成的面为曲面,则称为系统有场曲。与物高二次方、入射光瞳口径一次方成正比的像差。若仅存在场曲,则所有物平面上的点都有相应的像点,但分布在一个球面上;若采用弯成此种形状的底片,则可获得处处清晰的像。此时在理想像平面上,像点呈现为圆斑。第一张图是最简单也是最容易理解的场曲,也就是对焦点锐利,其余部分逐渐松散,但实际上大多现代镜头的场曲都呈现为图二的形态:对焦点与边缘锐度.
2020-08-18 21:18:53
1464
原创 镜头像差之四——像散
像散现象[astigmatism]轴外点细光束成像,将会产生像散和场曲,它们是互相关联的像差一个离轴点光源所发出的光线经过系统后,子午焦点与弧矢焦点不在同一位置上。 若仅存在像散,则轴外物点的光线通过光学系统后聚焦成两条焦。在这两条焦线的中点,光束形成最小弥散圆。 轴外物点用光束成像时形成两条相互垂直且相隔一定距离的短线像的一种非对称性像差被称为像散. 两条短线间沿光轴方向的距离即表示像散的大小 用符号Xts’表示 Xts...
2020-08-17 14:21:45
293
原创 镜头像差之二——色差
什么是色像差[chromatic aberration]色像差简称色差,是由于透镜材料的折射率是波长的函数,由此而产生的像差。光的实际波长为400nm~760nm,在同一介质中,由n=c/v,得出传播速度大的折射率小,传播速度小的折射率大。所以红光折射率最小,紫光折射率最大。由折射率越大焦距越短,因此对同一个透镜,红光的焦距最长,紫光的焦距最短。如果把一个简单的正透镜用来对无穷远的物体成像,由于各种颜色光的焦距不同,所成的像的位置也不同。不同颜色的光的像点沿光轴方向位置之差称为轴向.
2020-08-16 23:49:58
416
原创 镜头像差
备注:专栏中有关于6中像差的描述,可以继续关注阅读,下面是像差的概述。像差[aberration]理想的摄影镜头在成像时,必须具备下列几点特性:①点必须成像为点。②正前方的面必须与光轴垂直成像为正的面。③被摄体与镜头的成像必须是相似形。此外,从映像表现面来看,忠实的色彩再现性也不容忽视。如果只注意到靠近光轴的光线,那么,单色光(特定波长的光)的场合就可以获得接近理想镜头的描写性能。然而,对于必须使用大光圈以获取充分的光量,对焦也不只限于近光轴区域,而是画面的每一个角落的摄影镜头而言,只要下列各项障碍
2020-08-16 23:12:05
827
2
原创 镜头种类以及增透膜知识
2-1 透镜的种类 1.透镜的种类与片组(1)凸透镜中间厚、边缘薄的透镜称为凸透镜,又称“正透镜”,因为它具有会聚光线的性能,所以也称“汇聚透镜”。凸透镜按其形状不同,又分“双凸透镜”、“平凸透镜”、“凸凹透镜”。(2)凹透镜 中间薄、边缘厚的透镜称为凹透镜,又称“负透镜”,因它具有发散光线的性能,所以也称“发散透镜”。凹透镜按其形状不同又分“双凹透镜”、“平凹透镜”、“凸凹透镜”。(3)透镜片组 照相机的镜头是由镜片组成的,而由多少片镜片组成,这要根据镜头的性...
2020-08-16 21:41:54
881
原创 几何光学初级概论
1-1 光 谱 可见光的波谱是在400到700nm,故可见光在光谱中呈现出非常窄的范围。 可见光的特性: (1)互补色按一定的比例混合得到白光。如蓝光和黄光混合得到的是白光。同理,青光和红光混合得到的也是白光。 (2)颜色环上任何一种颜色都可以用其相邻两侧的两种单色光,甚至可以从次近邻的两种单色光混合复制出来。如黄光和红光混合得到橙光。较为典型的是红光和绿光混合成为黄光。 (3)如果在颜色环上选择三种独立的单色光。就可以按不同的比例混合成日常生活中可能出现的各种...
2020-08-15 17:49:27
592
原创 镜头像差之一——球差
1.什么是球差 近中心视场的光线与边缘光线,因为球面折射率不能均匀的将平行光线汇聚到同一点而形成弥散斑。 直接上图: 模拟图
2020-08-13 11:42:57
332
转载 镜头的性能评估
镜头的性能评估1、 解像力[resolution] 镜头的解像力指的是镜头对于被摄体的点像,它的再现能力。摄影作品的最终解像力,基于下列三个因素,即镜头解像力、胶片解像力和放大纸解像力。解像力的评估 ...
2020-08-06 17:12:28
352
原创 基于opencv的摄像头解像力量化SFR算法实现
开篇步入正题:搜到此文章的研发人员且认为你对MTF有一点点了解,下面直接讲解SFR算法,文章最后会附代码下载地址!先来上一张算法结果图片: 1.准备未经过sharpen&gamma处理的图像,因为gamma将数据进行了非线性处理,sharpen对边缘进行了overshoot处理。最好是原始bayer数据(democode中我使用的是bayer数据转成了bmp格式图片)。提取包含斜边的区域ROI,转化为YVU,我们只用Y通道数据就够了。(备注:当然你也可以对sharpen...
2020-06-28 14:52:18
1178
原创 引入的噪声程度:曝光时间,模拟增益,数字增益的不同
这几天收到几个刚在isp行业开始职业生涯的freshman的私信:问我不理解为何曝光时间引入的噪声最小,数字增益引入的噪声最大?接下里我给大家阐述一下;1.sensor光栅曝光时间在合理范围内,我们可以认为不会带来噪声。为什么说在一定范围内?因为有些sensor的线性化程度不好导致像素与周围像素接收光能的比例不同;对光积分的能力有限导致电荷溢出。但一般行业内认为这个光积...
2020-04-12 20:55:16
2029
3
原创 camera 解像力评测 imagetest工具使用
前言: 评价一个模组图像解析力的能力可以用mtf,sfr来衡量。常用标板有ctf标板(线对标板),sfr标板1.sfr标板有如下几种类型: 所有标板算法都是定位markdian,然后定位刀口(斜边),随后计算sfr。 2.sfr测试 一般用全视场测试可以满足不同视场的测试要求,比如:可以测试标号...
2020-02-04 17:01:51
4828
2
转载 坐标旋转
转载自:https://www.cnblogs.com/xcywt/p/9456526.html这里主要讲解如何算旋转后的左标,如下图:已知x1,x2,y1,y2和∠a,求x’,和y’。这时候就需要用到高中的三角函数的知识了。假设,(x1, y1)到(x2, y2)的长度为r,再画一个∠b。x’= x1 + r * cos(a + b);x’= x1 + r...
2020-01-03 11:53:06
142
转载 一次搞懂清晰度、对比度以及锐化的区别
文章转载自:https://blog.csdn.net/qijitao/article/details/80271507清晰度、对比度和锐化程度的调整,是照片后期的三个重要步骤。它们容易混淆,但各自效果却并不相同。本文会帮大家从原理上理清他们的区别。 1、对比度 对比度是指的画面的明暗反差程度。增加对比度,画面中亮的地方会更亮,暗的地方会更暗,明暗反差增强。 为了更好的解释...
2019-12-31 17:11:47
1599
镜头-Sensor等光学知识以及选型.ppt
2020-03-09
反差式对焦图片.gif
2020-03-18
反差式对焦图片.jpg
2020-03-18
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝